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Refraction and reflection of a wave when the interface
and the media are moving at relativistic speeds

G. Cavalleri* and E. Tonni
UniversitàCattolica, Via Trieste 17, 25121 Brescia, Italy

~Received 7 July 1997!

Explicit expressions for the cosines of the refracted and reflected angles are given as functions of the cosine
of the incident angle when the two media~usually fluids! and the interface are moving with relativistic
velocities. An application can be the refraction of electromagnetic waves in rarefied but very large clouds of
gas moving at relativistic speeds in the expanding universe.@S1063-651X~98!12102-5#

PACS number~s!: 03.40.Kf, 43.20.1g, 03.30.1p
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I. INTRODUCTION

The laws of refraction and reflection of a nonrelativis
wave, when the interface and the media are moving w
speeds much smaller than the speedc of light, have been
given in a recent paper@1#. We show here that the expre
sions for reflection are rigorous, while the third step of
fraction is approximated to first order. We give here an i
proved classical expression approximated to second or
We then extend the classical treatment to the case when
speeds are relativistic.

The main application regards the refraction, and som
times the total internal reflection, of electromagnetic wav
in rarefied but very large clouds of gas moving at relativis
speeds in the expanding universe.

A case of interest could be the gravitational lens effect
which a quasar receding with a speed.0.9c ~wherec is the
speed of lightin vacuo! emits light that is deviated by a
cluster of galaxies receding withv.0.7c. Actually, two or
more beams of light coming from the same quasar can re
the Earth, each beam following a different path, for instan
one passing from one part, and the other on the opposite
with respect to the deviating cluster of galaxies. The o
served quasar appears, therefore, as split in two or m
sources of light. The angular splitting is a few seconds of
arc and therefore a non-negligible contribution can co
from the refraction of light through the progressively mo
rarefied gas surrounding each galaxy and a cluster of ga
ies.

II. REFRACTION

We obtain refraction by the Huygens construction, i.e.,
the envelope of the refracted~or reflected! waves. In order to
perform this construction, the equiphase surfaces~or wave
fronts! in the first medium have to be perpendicular to th
velocities. This occurs only in the reference systemS0 at rest
with the first medium. To have neglected this fact has
Fahy @2# into error ~corrected by Cavalleriet al. @3#!.

We find the cosine cosu2 of the refracted angle in thre
steps. In the first one, we pass from the laboratory systeS
to the systemS0 at rest with the first medium~usually a
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fluid!. In the second step, we perform the Huygens constr
tion in S0 assuming medium 2 at rest with medium 1. In t
third step, we consider the actual velocityu2 of medium 2,
and we pass again to the laboratory systemS.

A clarification is needed for the interfaces that can be a
generic surface with a regular motion~i.e., without disconti-
nuities!. Locally, to find the refraction of a narrow wav
beam~or ray!, we can consider it as a plane~a small portion
of the tangent plane!. The two limitations~regular motion
and narrow beam! imply that the two pointsA andD of Fig.
2 have infinitesimal differences of velocity. For example,
s is rotating with the center of rotation betweenA andD, the
velocities of bothA and D are infinitesimal, i.e.,s is con-
sideredlocally at rest. For a large beam, we divide it in
narrow beams and calculate separately the refraction for e
of them, with theirlocal velocity V for s.

A. First step

We choose a systemS of Cartesian axes with thex axis
parallel to the velocityu1 of medium 1~through which the
incoming wave is propagating before refraction!. Let c1 be
the wave velocity inS andn̂ be the unit vector perpendicula
to the mobile interfaces and directed from medium 1 to
medium 2~see Fig. 1!. The incident angleu1 in S is given by

cosu15n̂•c1 /c15n̂• ĉ1 . ~1!

Notice thatn̂ is not the transformed unit vector ofn̂s per-
pendicular to the interfaces in the systemSs at rest withs.
Simply, n̂ is the unit vector perpendicular tos as seen byS
that should know the plane tangent to the interface~in the
small considered region of incidence!. To characterize the
local interfaces we choose three nearby pointsrK , rN , and
r P , as shown in Fig. 1, such that~for simplicity taking yN
5yK andxP5xK)

rN2rK5~xN2xK!êx1~zN2zK! êz , ~2!

r P2rK5~yP2yK!êy1~zP2zK! êz , ~3!

whereêx , êy , andêz denote the unit vectors of the Cartesia
axes. Denoting

A5urN2rKu5@~xN2xK!21~zN2zK!2#1/2, ~4!
3478 © 1998 The American Physical Society
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57 3479REFRACTION AND REFLECTION OF A WAVE WHEN . . .
B5ur P2rKu5@~yP2yK!21~zP2zK!2#1/2, ~5!

it is

n̂5~rN2rK!3~r P2rK!/AB, ~6!

hence

n̂x52~yP2yK!~zN2zK!/AB,

n̂y52~xN2xK!~zP2zK!/AB, ~7!

n̂z5~xN2xK!~yP2yK!/AB.

In order to pass from the laboratory reference systemS to the
systemS0 at rest with fluid 1, we must specify the kind o
clock synchronization we use, since to each kind there
lows a corresponding transformation@4#. For instance, if we
use the internal synchronization for bothS andS0 ~obtained
either by Einstein’s method or by slow clock transport! the
corresponding relativistic transformations are those of L
entz. If we use the external synchronization, the correspo
ing relativistic transformations are those of Tangherlini@4#.
The latter ones are used in the Appendix as an unusua
ercise, while in the main text of this paper we use the L
entz transformations, which are more familiar. We take
reference systemS0 with the axes parallel to those of refe
enceS and with thex0 axis of S0 superimposed and slidin
on thex axis ofS ~thex andx0 axes are therefore parallel t
the velocityu1 of fluid 1 as observed byS). Consequently,
denoting by the subscript 0 the quantities measured inS0, we
have

y05y, z05z,

FIG. 1. The local reference systemS has been chosen so that th
x axis will be parallel to the local velocityu1 of the first medium.
The vectorsrK , rN , and r P denote the positions of three nearb
points belonging to the interfaces having local velocityV. The

unit vectorn̂ is perpendicular to the local element ofs ~character-
ized byrK , rN , andr P). The local velocity of the wave in medium

1 is denoted byc1 and forms the angleu1 with the local normaln̂.
l-

-
d-

x-
-
e

x05g1~x2u1t !, ~8!

t05g1~ t2xu1 /c2!,

wherec is the speed of light in vacuum and

g15~12u1
2/c2!21/2 ~9!

is the usual relativistic factor.
Because of the longitudinal relativistic contractions, t

local interface~where the narrow wave beam impinges! ob-
served byS0 and denoted bys0 is bent differently than thes
observed byS. To use the Huygens construction in the sy
temS0, the unit vectorn̂0 ~measured inS0) perpendicular to
~the plane tangent to! the interfaces0 must be simultaneous
for S0 so that it is not the transform ofn̂. Consequently,n̂0
can be expressed by the same three nearby points, usedS
to characterize the local interfaces, now measured inS0 and
denoted byr0K , r0N , andr0P .

Taking into account thatr P , rK , r0P , andr0K are simul-
taneous since they lie on a plane perpendicular to thex axis,
we obtain from Eq.~8!

r0P2r0K5r P2rK , ~10!

so thatB0 corresponding toB defined by Eq.~5! is still equal
to B.

On the contrary,rN and r0N are not simultaneous so tha
r0N(t0N)2r0K(t0K) is not the transform ofrN(tN)2rK(tK)
since r0N2r0K and rN2rK are relevant to thedifferent
space-time events.

We taker0K , r0N , andrK at t5t050 and denote byrN*
2rK the element relevant to the same space-time event
r0N2r0K but measured by the laboratory observerS ~while
r0N2r0K is measured byS0 at rest with medium 1!. Their
components transversal tou1 are the same, while their lon
gitudinal components are related to each other, as deriv
from x* 5g1 (x01u1 t0) with t0N5t0K50, by

xN* 2xK5g1~x0N2x0K!. ~11!

For S, there is a time intervaltN* 2tK , for the events
judged as simultaneous byS0, derivable from 05t0
5g1 (t* 2u1x* /c2), which is

tN* 2tK5~xN* 2xK!u1 /c2. ~12!

During this time intervalrN moves with velocityV of the
local interface reachingrN* so that

rN* 2rK5rN2rK1V~xN* 2xK!u1 /c2. ~13!

Projecting Eq.~13! on u1, i.e., on thex axis, gives

xN* 2xK5xN2xK1Vx~xN* 2xK!u1 /c2, ~14!

from which we get

xN* 2xK5~xN2xK!~12Vxu1 /c2!21. ~15!

Then we obtain by Eqs.~11! and ~15!

x0N2x0K5g1
21~xN2xK!~12Vxu1 /c2!21. ~16!
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3480 57G. CAVALLERI AND E. TONNI
Projecting Eq.~13! on they andz axes, using Eq.~15!, and
taking into account that, because of Eq.~8!, it is yN* 5y0N

andzN* 5z0N , gives, respectively,

yN* 2yK5y0N2y0K5Vy~xN2xK!~12Vxu1 /c2!21u1 /c2,
~17!

sinceyN5yK ~see Fig. 1!, and

zN* 2zK5z0N2z0K5zN2zK1Vz~xN2xK!

3~12Vxu1 /c2!21u1 /c2. ~18!

Finally, we obtain by Eqs.~16!, ~17!, and~18!,

r0N2r0K5êx

g1
21~xN2xK!

~12Vxu1 /c2!
1êyF Vy~xN2xK!

~12Vxu1 /c2!

u1

c2G
1êzFzN2zK1

Vz~xN2xK!

~12Vxu1 /c2!

u1

c2G , ~19!

so thatA0, corresponding toA defined by Eq.~4!, turns out
to be given by

A05ur0N2r0Ku

5H ~xN2xK!2@g1
221~Vy

21Vz
2!u1

2/c4#

~12Vxu1 /c2!2

1~zN2zK!21
2 ~zN2zK!Vzu1 ~xN2xK!

c2~12Vxu1 /c2!
J 1/2

.

~20!

We now have all the elements to define the unit vectorn̂0
measured inS0 by an expression similar to Eq.~6!,

n̂05~r0N2r0K!3~r0P2r0K!/A0B, ~21!

wherer0N2r0K is given by Eq.~19!, r0P2r0K by Eq. ~10!,
B by Eq. ~5!, andA0 by Eq. ~20!.

The wave velocityc01 in S0 is given, sinceu15u1 êx , by

c015~12u1•c1 /c2!21@~c1x2u1!êx1g1
21~c1yêy1c1zêz!#.

~22!

The incident angleu01 in S0 is obtained from

cosu015n̂0•c01/c015n̂0• ĉ01, ~23!

with n̂0 expressed by Eq.~21!.
The three mutually nearby pointsrK , rN , r P are chosen

so thatr0K , r0N , r0P and their order in the vector produc
~21! bring about cosu01.0.

B. Second step

The Huygens construction is performed inS0 considering
the fluid in the second medium as being at rest with the fi
one. The situation of two fluids at relative rest in spite of t
fact that their boundary plane moves, is theoretical and u
ful as an intermediary step to find the final solution. Ho
t

e-
-

ever, such a situation could practically be performed b
thin, porous piston in a cylinder~filled with a fluid! which
keeps two different pressures and densities in the two p
of the closed cylinder just by moving. The piston can also
substituted by a shock wave of pressure.

Let V be the velocity of the interface in the laborato
systemS. The corresponding velocity inS0 is

V05~12u1•V/c2!21@~Vx2u1!êx1g1
21~Vyêy1Vzêz!#.

~24!

Both V andV0 can, in general, be comparable withc.
What is effective is the component

V0'5V0•n̂05bc. ~25!

The unit vectorn̂0 is drawn so thatc01•n̂0.0. Media 1 and
2 contain the incident and refracted wave, respectively. Ifs0
were at rest, there would be no ambiguity about which on
the incident wave. However, ifV0'.c01 cosu01, it is the
interfaces0 that reaches the fleeing wave and we have
exchange medium 1 for 2 in Fig. 2. Consequently, ifs0 is at
rest, medium 1 is always the onenot containingn̂0 ~drawn
starting from the interface!. If s0 is in motion, medium 1 is
that not containingn̂ only if

s5sgn~c01 cosu012V0'! ~26!

FIG. 2. A wave has velocityc01 in medium 1 and equiphas
surfaceAB perpendicular toc01 if the observerS0 is at rest with
medium 1. An interface having velocityV0 separates medium 1

from medium 2.n̂0 is the unit vector perpendicular~for S0) to the
interface and directed from 1 to 2. When a wave ray impinges
the interface atA the wave is refracted in medium 2~considered at
rest withS0) with velocity c02. Point B of the wave front reaches
the moving interface inB8 while pointA reachesA8 in medium 2 at
rest withS0 so that the equiphase surfaceA8B8 is still perpendicular
to the refracted rayAHA8. This is the Huygens construction fo
media at rest but moving interface,A8B8 being the envelope of the
spherical waves radiated by the points of the interface success
reached by the impinging wave front. In the general case of me
moving with velocitiesu1 andu2 , respectively, we add relativisti
cally u1 to c01 andu2 to c02.
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57 3481REFRACTION AND REFLECTION OF A WAVE WHEN . . .
is positive, medium 1 is the one containingn̂0 if s is nega-
tive.

We consider the first case, i.e.,s51, in Fig. 2 where the
Huygens construction is plotted with respect to observerS0.
The treatment of this second step is the same as in the
relativistic case since forS0 there is no composition of ve
locities and an observer can describe any motion.

With reference to Fig. 2,AB is the trace of the equiphas
front in medium 1 at rest~i.e., observed in systemS0) so that
it is perpendicular to the velocityc01. The wave ray which
impinges on the boundary plane atA begins to travel in
medium 2 with the velocityc02 alongAA8. At time t0, when
the phase front reachesA8, the same phase started inB at
time t050 reaches the moving boundary plane inB8. Since
the ray sectionBB8 has always been in medium 1 and t
ray sectionAA8 in medium 2, it is

t05uAA8u/c025uBB8u/c01. ~27!

The refracted phase frontA8B8 is perpendicular toAA8 be-
cause in this second step of our solution the medium 2 is
considered at rest withS0. This phase front is obtained as th
envelope of the spherical waves radiated by each point of
boundary plane reached by the incoming wave.

We see from Fig. 2 thatuBB8u5c01 t0 may also be writ-
ten as

c01 t05uBDu1uDB8u5uADu sinu011V0'6t0 /cosu01.
~28!

Similarly we may writeuAA8u5c02 t0 as

c02 t05uA8Hu1uHAu5uB8Hu sinu021V0't0 /cosu02,
~29!

where

uB8Hu5uADu1V0't0~ tanu012tanu02!. ~30!

Obtaining t0 from Eq. ~28! and substituting it in Eq.~29!,
where Eq.~30! is used, gives, after simplifying the facto
uADu that appears in both sides,

c02 sinu015sinu02S c012
V0'

cosu01
D

1V0' sinu01 sinu02S sinu01

cosu01

2
sinu02

cosu02
D

1V0'

sinu01

cosu02

. ~31!

Simplifying Eq. ~31!, and calling

m5V0' sinu01, p5c012V0' cosu01, q5c02 sinu01,
~32!

we obtain

m cosu021p sinu025q, ~33!

If V0'52uV0'u, all the preceding expressions keep th
validity.
n-

ill

e

r

The same Eq.~33! is obtained in the second case (s5
2), as shown in Ref.@1#, since this second step is the sam
in both the relativistic and nonrelativistic treatments. T
only difference is given by the connection~24! betweenV
andV0 ~which in the nonrelativistic case reduces toV05V
2u1). The solution of Eq.~33!, taking into account all the
cases@s56, with s given by Eq.~26!# and subcases (s5
2, p.0andp,0 as examined in Ref.@1#!, is

cosu025
mq1sp~m21p22q2!1/2

m21p2
, ~34!

with m, p, andq given by Eq.~32!.
Since c02 is known ~it is the speed of the wave in th

medium at rest!, projecting the direction ofc02 on the normal
n̂0 to the local interface and on the normal ton̂0 lying in the
refraction plane, it is

c025n̂0c02 cosu021~ n̂03c01!3n̂0 un̂03c01u21c02 sinu02,
~35!

where cosu02 ~hence sinu02) is given by Eq.~34!, n̂0 andc01
are given by Eqs.~21! and ~22!, respectively.

C. Third step

The third step of our procedure is now introduced by co
sidering the motion of the second fluid.

Since we have chosen thex axis parallel tou1, as said in
Sec. II A, the velocityu02 of medium 2 with respect toS0 is
given by

u025~12u1•u2 /c2!21@~u2x2u1!êx1g1
21~u2yêy1u2zêz!# ,

~36!

whereg1 is given by Eq.~9!. Notice that even ifu02!c we
must use the relativistic composition~36! sinceu1 andu2 are
relativistic.

If u02!c02!c, as usually occurs in the nonrelativist
case studied in Ref.@1#, then the velocityc02* , still measured
by S0 but in the second fluid moving with velocityu02, has
been written in Ref.@1# as

c02* .c021u02 if u02!c02!c. ~37!

Notice thatc02 is now the velocity of the wave in a third
reference systemS2 at rest with the second medium. Obv
ously, its absolute valuec02 is equal to that used in Sec. II B
since there medium 2 was considered at rest. On the c
trary, c02* is measured inS0 andc02* Þc02 because of the drag
due to the second medium.

If even u1 and u2 are much less thanc, then u02.u2
2u1, so that Eq.~37! reduces to Eq.~16! of Ref. @1#. As a
clarification of what was done in Ref.@1#, it appears from
Fig. 3 that Eq.~37! is approximate to the first order in
u02/c02. Actually, in the prerelativistic case, where there
complete drag of the wave by part of the moving mediu
the center of the spherical wave produced by the incid
wave in A moves to F given by AF5u02t0, where t0
5uBB8u/c01. Now the envelope of the spherical waves
medium 2 is the wave frontB8G, tangent inG to the spheri-
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3482 57G. CAVALLERI AND E. TONNI
cal wave centered inF. The simple addition of the velocitie
would give the pointF8 ~such thatA8F85u02t0) instead of
G, i.e., a directionAF8 for the refracted wave instead ofAG.
We clearly see thatF8G/FG5o(u02/c02) and that Eq.~37!
is rigorous only whenu02 is perpendicular toc02.

In the general case, the first order approximation
u02/c02 is just of the same order of the ratio between t
second and the first term in Eq.~37!. The worst approxima-
tion occurs whenû025 ĉ02. An improved expression with
respect to Eq.~37! is

c02* 5c021u021u02• ĉ02

~ n̂03 ĉ01!

un̂03 ĉ01u
3 ĉ02, ~38!

which is approximated to second order in (u02/c02).
Now, even with an acoustic wave~so thatc02 is the speed

of sound!, it is u02/c02!1 so that Eq.~38! is widely satis-
fied. Even ifu1 andu2 are very large, as is the case for th
cloud of gas surrounding a galaxy receding at relativis
speed, the relative velocityu02 can be very small if we divide
the moving and shrinking cloud of gas in many layers so t
the relative velocityu02 between two adjacent layers is muc
smaller thanc02.

We can proceed in the same way in the relativistic ca
as well. In the systemS2 at rest with the second fluid, th
wave frontAB and the local interface form an angle differe
from that observed inS0 because of the longitudinal relativ
istic contraction. However, this is a second order effect
u02/c and therefore of the same order as Eq.~38!.

We therefore assume that the systemS2 measures a ve
locity for the refracted wave equal to the velocityc02 mea-
sured byS0 when the second medium was assumed at
with medium 1 and given by Eq.~35!.

In order to obtain the velocityc02* of the refracted wave a
measured byS0, we must transformc02 measured in the ref

FIG. 3. The center of the wave produced inA is transported to
F and the vectorAF is given byu02 uBB8u/c01. The envelope of
the wave centered inF and starting fromB8 is the wave frontB8G.
The rigorous direction in the nonrelativistic case would beAG and
not AF85(c021u02) uBB8u/c01. The result may be expresse

as c02* 5c021u021u02• ĉ02@(n̂03 ĉ01)/un̂03 ĉ01u#3 ĉ021o(u02/c02)
2,

which coincides withc021u02 whenu02 is perpendicular toc02.
n

c

t

e,

n

st

erence systemS2 ~at rest with fluid 2 and therefore movin
with velocity u02 with respect toS0) to c028 measured in the
systemS0 ~at rest with fluid 1! and then add the first orde
correction appearing in the classical Eq.~38!, i.e.,

c02* 5c028 1u02• ĉ02

~ n̂03 ĉ01!

un̂03 ĉ01u
3 ĉ02. ~39!

Since thex axis is in general not parallel toc02, we must
start from the Lorentz transformation betweenS0 and the
systemS2 ~at rest with fluid 2! in vector form,

r05r21û02~g0221!û02•r21g02u02t2 ,
~40!

t05g02~ t21u02•r2 /c2!,

where

g025~12u02
2 /c2!21/2. ~41!

We derive from Eq.~40!, taking into account that we as
sumeddr2 /dt25c02,

c028 5
dr0

dt0
5g02

21 c021û02~g0221!û02•c021g02u02

11u02•c02/c2
. ~42!

For u02,c02!c, Eq. ~42! reduces to Eq.~37!. For u02!c but
c02 relativistic, expanding Eqs.~42! to first order gives

c028 .c021u022c02u02•c02/c2 if u02!c. ~43!

If we denote byn5c/c02 the refraction index in the secon
fluid, Eq. ~43! becomes

c028 .c021u02~ û022 ĉ02 û02• ĉ02/n2!, ~44!

which expresses Fizeau’s drag coefficient.
We now add the corrective term of Eq.~38! to either Eq.

~42! or Eq. ~43!, since Eq.~38! is approximated to within
o(u02/c02)

2. Choosing the simple Eq.~43!, we obtain

c02* .c021u022c02u02•c02/c21u02• ĉ02

~ n̂03 ĉ01!

un̂03 ĉ01u
3 ĉ02,

~45!

where now, differently from the classical Eq.~38!, all the
quantities are relativistic, withn̂0 given by Eq.~21!, ĉ01 by
Eq. ~22!, u02 by Eq. ~36!, andc02 by Eq. ~35!.

To obtainc2 we transformc02* from the systemS0 ~at rest
with medium 1! to the laboratory systemS,

c25~11u1•c02* /c2!21@~c02x* 1u1!êx1g1
21~c02y* êy1c02z* êz!#,

~46!

whereu1 is the known velocity of fluid 1 with respect to th
laboratory observer andc02* is given by Eq.~45!, with u02 and
c02 given by Eqs.~36! and ~35!, respectively. Finally,

cosu25n̂•c2 /c2 , ~47!
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57 3483REFRACTION AND REFLECTION OF A WAVE WHEN . . .
wherec2 is given by Eq.~46! andn̂ is the local normal to the
interface as seen by the laboratory observerS and given by
Eq. ~6!.

III. REFLECTION

Reflection on a mobile mirror may be treated in a simi
way with the obvious simplificationu15u25u, c15c2, c01
5c025c0 , and uAA8u5uBB8u5a5c0t0 ~see Fig. 2 of Ref.
@1#!. The unit vectorn̂ perpendicular to the reflecting mirro
as judged by the laboratory systemS is still given by Eq.~6!
with A and B given by Eqs.~4! and ~5!, respectively. The
first step always consists in passing fromS to the systemS0

at rest with the fluid and to find the new unit vectorn̂0
perpendicular to the mirror as judged byS0. This unit vector
n̂0 is expressed by Eq.~21!, in which B is given by Eq.~5!
andA0 by Eq. ~20!. The wave velocityc01 in S0 is given by
Eq. ~22!, and the incident angleu01 by Eq. ~23!, i.e., cosu01

5c01•n̂0 /c0. The componentV0' ~of the mirror velocityV0)
along the unit normaln̂0 perpendicular to the surface an
measured byS0 is given by Eq.~25!, whereV0, expressed by
the quantities inS, is given by Eq.~24!.

The Huygens construction inS0, shown in Fig. 3 of Ref.
@1#, leads to Eqs.~28!–~33!. The only difference~with re-
spect to refraction! regards solution~34!, since we now have
to choose the other sign for the radical that appears in
solutions of the second degree equation in cosu02. Since the
radical is now a perfect square becausec015c025c0, the
solution is therefore

cosu025 ĉ02•n̂05
mq2p~c0cosu012bc!

p21m2
. ~48!

The sign ofs in Eq. ~34! is now substituted by the term
inside the parentheses in Eq.~48!.

Once cosu02 is obtained, one calculates sinu02 and, by Eq.
~35!, the directionc02/c0 of the reflected wave ray.

The third step consists in returning to the laboratory s
tem S by means of Eq.~46!, where, for reflection,c02*
5c02. Finally, cosu2 is still given by Eq.~47!.

In the case of reflection, the first and the second media
the same, so that the relative velocityu0250. Consequently,
both the classical Eq.~38! and the relativistic Eq.~45! give
rigorouslyc02* 5c02. The result for reflection is therefore rig
orous and not approximated to second order as occurs
refraction.

IV. CONCLUSIONS

We have improved the classical treatment@1# of refraction
when the two media and the interface are moving with n
relativistic velocities. The improved expression is Eq.~38!,
which is approximated to second order inu02/c02, as the
corresponding relativistic expression Eq.~45!.

The classical treatment for reflection~that does not need
the third step! was already rigorous and we have here giv
the rigorous relativistic treatment.

The solution for the cosine of the refracted wave is giv
by Eq.~47!, with c2 given by Eq.~46!, wherec02* is expressed
r

e

-

re

for

-

n

n

by Eq. ~39!, with c028 given by Eq.~42!. Thenu02 and c02,
which appear in Eq.~42!, are given by Eqs.~36! and ~35!,
respectively. In turn, cosu02 in Eq. ~35! is given by Eq.~34!,
where m, p, and q are given by Eq.~32!. Finally, V0' is
given by Eq.~25! with n̂0 andV0 expressed by Eqs.~21! and
~24!, respectively, bothu1 and V being known, andr0N
2r0K and A0 being given by Eqs.~19! and ~20!, respec-
tively.

The same expressions hold for reflection, the only diff
ence being that cosu02 is given by Eq.~48! instead of by Eq.
~34! and thatc02* 5c02, since fluid 2 is the same as fluid 1.

These expressions, as said in the Introduction, may h
applications in astrophysics, in particular to find small co
rections to the gravitational lens effect because of the r
tivistic motion of the very rarefied but very large clouds
gas surrounding both the emitting quasar and the deflec
cluster of galaxies.
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APPENDIX

Before the three fundamental papers of Mansouri a
Sexl @4#, physicists used only the Lorentz transformation
which are a consequence of the internal synchronization
clocks, performed either by the Einstein method or by
slow clocks transport. After their work, it became clear th
there are infinite possible relativistic transformations cor
sponding to infinite possible synchronizations of clocks
occurs in prerelativistic, or Galilean, kinematics. Howev
while in the latter there is only one very simple transform
tion ~that of Galileo!, in special relativity there are two con
venient and simple transformations:~i! of Lorentz, and~ii ! of
Tangherlini. The second one corresponds to the ‘‘extern
synchronization, in which the second observerS0 synchro-
nizes his own clocks by local coincidences with the cloc
belonging to the first observerS. In this way there is conser
vation of simultaneity of separate events and the transfor
tions are no longer symmetric. For instance, longitudi
rods at rest withS0 are measured as contracted byS ~as by
the Lorentz transformations!, but the longitudinal rods at res
with S are measured as lengthened byS0 ~differently from
what occurs by the Lorentz transformations!. Similarly, the
rates of clocks at rest withS0 are measured as slowed dow
by S, but the rates of clocks at rest withS are measured a
increased byS0. Moreover, the speed of light isc and iso-
tropic for S only but not forS0, i.e., it is no longer invariant.

The Tangherlini transformations~corresponding to the ex
ternal synchronization! are

t05g1
21t ~A1!

and

x05g1~x2u1t !,

y05y, z05z,

or, in vector form,
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r05r1~g121!r•û1û12g1u1t. ~A2!

The direct measurements performed byS are the same so
that we still have Eqs.~1!–~7!. ForS0 we still have Eqs.~21!
and~10! but, instead of Eq.~19!, we have the much simple
expression

r0N2r0K5 êxg1~xN2xK!1êz~zN2zK!, ~A3!

since the external synchronization implies the conserva
of simultaneity of separate events. Consequently,

A05ur0N2r0Ku5@g1
2 ~xN2xK!21~zN2zK!2#1/2,

~A4!

instead of the much more complicated Eq.~20!.
The wave velocityc01 in S0 can be derived from Eq.~A1!,

and it is

c01y5
dy0

dt0
5

dy

g1
21dt

5g1c1y , c01z5g1c1z ,

c01x5
dx0

dt0
5

g1~dx2u1dt!

g1
21dt

5g1
2~c1x2u1!,

or, in vector form,

c015g1@g1~c1x2u1!êx1c1yêy1c1zêz#, ~A5!

instead of Eq.~22!.
Similarly, the velocity V0 ~measured byS0 using the

Tangherlini transformations! of the moving interfaces0 is

V05g1@g1~Vx2u1!êx1Vyêy1Vzêz#, ~A6!

and the velocityu02 of medium 2~measured byS0) is ex-
pressed by

u025g1@g1 ~u2x2u1!êx1u2yêy1u2zêz#. ~A7!

The velocityc02* ~still measured byS0) of the wave in the
moving medium 2 is still given by Eq.~39!. To obtainc028 we
must find the transformations from medium 2 to medium
taking into account that the Tangherlini transformations
not symmetric.

If we maintain the same directions for the Cartesian a
~i.e., ê15û1), we have thatu2 is not parallel to thex axis,
and the inverse transformations from the reference systemS2
~at rest with fluid 2! to the laboratory systemS are

t5g2t2 ,
tt.

e
V

n

,
e

s

r5r21û2~g2
2121!r2•û21g2u2t2 , ~A8!

where

g25~12u2
2/c2!21/2. ~A9!

Notice thatg2Þg02 given by Eq.~41!.
Substituting Eqs.~A8! into Eqs.~A1! and ~A2! gives

t05g1
21g2t2 ,

r05r21û2~g2
2121!r2•u21g2u2t2

1~g121!û1û1•@r21û2~g2
2121!r2•û21g2u2t2#

2g1g2u1t2 , ~A10!

from which we get

c028 5
dr0

dt0
5g1g2

21$c021û2~g2
2121!c02•û21g2u2

1~g121!û1û1•@c021û2~g2
2121!

3c02•û21g2u2#2g1g2u1%, ~A11!

wherec02 is still given by Eq.~35!.
Finally, in order to transformc02* from S0 to the laboratory

systemS, we use the transformation inverse to that given
Eq. ~A2!, i.e.,

r5r01~g121!r0•û1û11g1u1t0 , ~A12!

from which we get

c25
dr

dt
5g1

21@c02* 1~g1
2121!c02* •û11g1u1#. ~A13!

The cosine of the refracted angle is still given by Eq.~47!
~of the main text!, where c2 is now given by Eq.~A13!,
whereu1 is known, andc02* is still given by Eq.~39! with c028
given by Eq.~A11!, in which c02 is still given by Eq.~35!
with cosq02 given by Eqs.~34! and ~32!. Finally, V0' is
given by Eq.~25! with n̂0 andV0 expressed by Eqs.~21! and
~A6!, respectively, bothu1 and V being known, andr0N
2r0K and A0 being given by Eqs.~A3! and ~A4!, respec-
tively.

Concluding, the use of the Tangherlini transformatio
leads to a much simpler expression forn̂0 and to a somewha
more complicated expression forc028 than that of Lorentz.
.

@1# A. Ascoli, C. Bernasconi, and G. Cavalleri, Phys. Rev. E54,
6291 ~1996!.

@2# E. F. Fahy, Nature~London! 188, 396 ~1960!.
@3# G. Cavalleri, L. Galgani, G. Spavieri, and G. Spinelli, Le

Nuovo Cimento17, 25 ~1976!.
@4# For the other possible relativistic transformations consequ

to different clock synchronizations, see R. Mansouri and R.

nt
.

Sexl, Gen. Relativ. Gravit.8, 497~1977!; 8, 515~1977!; 8, 809
~1977!; M. Podlaha, Indian J. Theor. Phys.26, 189 ~1978!; T.
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